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Abstract. Spreading phenomena arise from simple local interaction among a
large number of actors through different networks of interactions. Computational
modelling and analysis of such phenomena is challenging due to the combina-
torial explosion of possible network configurations. Traditional (single layer)
networks are commonly used to encode the heterogeneous relationships among
agents but are limited to a single type of interaction. Multiplex Multi-Layer net-
works (MLNs) have been introduced to allow the modeler to compactly and natu-
rally describe multiple types of interactions and multiple simultaneous spreading
phenomena. The downside is an increase in the complexity of the already chal-
lenging task of the analysis and simulation of such spreading processes. In this
paper we explore the use of lumping techniques that preserve dynamics, pre-
viously applied to Continuous Time Markov Chains (CTMC) and single layer
networks to multiple spreading processes on MLNs.

Keywords: Multiplex Multi-Layer Networks, Spreading Processes, Model Re-
duction Techniques, Lumping, Stochastic Processes

1 Introduction

Spreading phenomena such as epidemics emerge from simple, local interactions among
a large number of actors, influencing each-other through different networks of inter-
action. The ability to faithfully model and predict the macroscopic consequences of
spreading phenomena over networks, is of key importance in a wide range of applica-
tion scenarios, ranging from mitigating epidemics [14], to understanding animal collec-
tives [7] and online social networks [20] to cite a few.

Computational modelling and analysis of spreading processes quickly becomes
challenging, due to the combinatorial explosion of possible network configurations,
typically evolving stochastically over time, resulting into a large-scale continuous-time
Markov chain (CTMC) [19, 9, 2]. For instance, a network of n actors where each actor
can either be infected (I) or susceptible (S) to infection, gives rise to 2n possible network
configurations. On the other hand, Reaction network formalism facilitates the descrip-
tion of actors interacting based on their feature described by a suitable variable name.
For example, a Susceptible-Infected-Susceptible (SIS) model, widely used to study the
spread of opinions, rumours and memes in social networks, is specified through two
local interactions between actors in state S or I: (i) S + I → 2I for infection spread
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and (ii) I → S for recovery. Such model typically does not specify whether two actors
are related or not and hence assumes population homogeneity. Homogeneity assump-
tion allows to reduce the number of states through a population abstraction, requiring
to only enumerate the total number of actors in each of the states (S and I), hence re-
ducing the number of states in the above example from 2n to n. Network homogeneity
is however a strong assumption in most real-world scenarios. For instance, in case of
epidemic spread, different individuals will have a different range and intensity of in-
teractions with family, friends and coworkers that form a network of physical contact
in which an infection can spread. State representation in form of a single-layered net-
work configuration (where each actor has a specific state, e.g. S or I) allows to encode
such relational heterogeneity. Reaction network formalism can facilitate such encoding
through identifiers denoting position of actors in a network, e.g. Si + Ij → Ii + Ij ,
and conditioning the respective rate to the existence of an edge between actors [9, 2,
8]. Moreover, in reality, the same group of individuals can partake in different spread-
ing processes at different interaction networks, which in turn affect each-other [1]. In
these cases, independent analysis of spreading processes over single-layer networks is
limited. To exemplify, while the infection spreads through physical contact, the rate of
contact is influenced by other factors, such as awareness: an agent aware of the disease
will have less contact; In turn, an agent with the disease will spread awareness more ac-
tively. Awareness will spread as well, through a communication network that may have
significantly different dynamics than the infection spread. A faithful representation of
interrelated spreading processes will further blow-up the space of states and parameters
in a model [8]. Unlike single-layer networks, representing system state in terms of a
multi-layer network (MLNs) allows to simultaneously incorporate multiple layers of
relationship between network actors, as well as inter-layer correlations, in a natural and
compact way [8, 15, 5, 12] . However, more detailed description further challenges the
respective computational simulation and analysis. Formal reductions based on lump-
ing states that are behaviourally equivalent are desirable [17], yet novel techniques
are needed for the context of MLNs. In this paper, we propose a number of formal
model reduction techniques for MLNs. The techniques are inspired by reductions de-
tecting symmetries that aim to provably preserve the properties of the original system
through lumping states. Different state representations and respective semantics of ex-
ecutions are subject to different lumping techniques, including the state lumping ideas
previously used in context of reductions of CTMCs and differential-drift dynamical
systems (preserving dynamical features), as well as reductions of static, undirected net-
works (preserving structural properties such as network centrality). We then empirically
demonstrate and compare the performance of different reductions over a variety of ar-
tificially generated and real-world MLNs. Finally, we show how to efficiently compute
the proposed reductions, and we show how to speed up the respective computational
simulation of complex spreading processes on MLNs.

2 Background

Notation. Throughout this work, when clear from context, we will use xi both to denote
the i-th element of vector x or the value of the map x(i). For a partition H over a
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variable set Vp ⊆ {x1,x2, . . .}, induced by an equivalence relation ∼H⊆ Vp × Vp, we
will denote elements of a partition class H ∈ H by xH,1,xH,2, . . . ,xH,|H|. We denote
by ‖·‖1 the 1-norm. We will denote with VN = {1, . . . , N}, VL = {1, . . . , L} the set of
actors and layers, respectively. We will assume N > 0 and L > 1 (MLNs with L = 1
are a special case that corresponds with traditional single-layer networks). Vectors will
be assumed to be written in column notation.

2.1 Reaction Networks
A reaction network is formally a pair (S,R) where S is a set of species and R is a set
of reactions. Each reaction is in the form ρ

α−→ π, where α > 0 is a kinetic parameter
and ρ and π are multisets of species called reactants and products, respectively. The
multiplicity of species S in ρ is denoted with ρ(S), which represents the stochiometry
coefficient. The set of all reagents and products across all the reactions in the network
are denoted by ρ(R) and π(R). Throughout this work, we will consider the stochas-
tic semantics. It is worth mentioning when we refer to the deterministic semantics of
reaction networks we use Ordinary Differential Equations with mass-action kinetics.

Stochastic semantics. The stochastic semantics of a reaction network is given by a
Continuous Time Markov Chain (CTMC) where each state σ is a multiset of species.
From a state σ such that ρ ⊂ σ, a reaction ρ α−→ π induces a transition with mass-
action propensity α

∏
S∈ρ

(
σ(S)
ρ(S)

)
to state σ+π−ρ, where the plus and minus operators

indicate multiset union and difference, respectively, while S ∈ ρ denotes that S belongs
to the support of ρ(S), i.e. ρ(S) > 0. Given an initial state σ̂, the state space can be
derived by exhaustively applying the reactions to compute all possible states reachable
from σ̂. We denote out(σ) the multiset of outgoing transitions from state σ,

out(σ) = {σ λ−→ σ + π − ρ | (ρ α−→ π) ∈ R, λ = α
∏
S∈ρ

(
σ(S)

ρ(S)

)
}

For any two distinct states σ and φ, we denote by q(σ, φ) the sum of the propensities
from σ to φ across all the reactions, that is

q(σ, φ) =
∑

(σ
λ−→φ)∈out(σ)

λ

Moreover, we set q(σ, σ) to be the negative sum of all possible transitions from state σ,
i.e., q(σ, σ) = −

∑
φ 6=σ q(σ, φ). These values ensure a well-formed CTMC generator

matrix, which characterises the dynamical evolution of the CTMC. Each component of
its solution, is the probability of being in a given multiset of species at time t starting
from some initial probability distribution.

2.2 Multiplex Multi-Layer Networks
In this paper, we use a generalisation of networks called multiplex networks or edge-
colored-graphs, which are useful for simultaneously representing different kinds of re-
lationships over the same set of actors [5]. This paper will focus on undirected multiplex
networks.
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Definition 1. A multiplex network with N actors and L layers is an ordered collection
of L undirected graphs over the same set of actors:

G = {G(l) = (VN , E
(l))}l∈VL ,

where E(l) : VN × VN → R≥0 are the edges on layer l ∈ VL. For every layer l, we
denote the non-negative adjacency matrix of the graphG(l) by A(l) = (A

(l)
ij ) ∈ RN×N≥0 .

Then, the multiplex network can be represented by a 3rd-order adjacency tensor:

A = (Aijl) ∈ RN×N×L≥0 , such that Aijl := A
(l)
ij = E(l)(i, j),

that is, Aijl represents the presence of an edge between actors i and j on layer l.

2.3 Lumping species in a reaction network

We next review three formal reductions techniques for lumping species, based on the
reaction network description [3]. Each of the techniques was proposed with a goal to
guarantee a certain semantic relationships. These reduction ideas will be employed for
reducing spreading processes over MLNs. Let (S,R) be the reaction network. Then,

– (Forward Equivalence) ∼FE⊆ S × S is a forward equivalence, if sum of the drift
functions in the respective differential semantics for any two equivalent states is
equivalent (up to ∼FE). The condition guarantees that the sum of solutions for
species lumped by ∼FE will be equal to the solution of respective macro-species
in the reduced ODE system. Given a reaction network, finding relation∼FE can be
done in polynomial time3 [3].

– (Backward Equivalence) On the other hand, ∼BE⊆ S × S if the drift functions
in the respective differential semantics for any two equivalent states are equivalent
(up to ∼BE). The lumping condition guarantees that, in case two lumped species
start from the same initial conditions, their solutions in the deterministic semantics
will coincide across time. The complexity of finding ∼BE is the same as for ∼FE .

– (Stochastic Equivalence) ∼SE⊆ S × S is a stochastic equivalence, where two
species are lumped, if the cumulative rates towards any partition of multi-sets in-
herited by ∼SE from any multi-set containing s and resp. s′ are equal. This cumu-
lative rate will represent the rate between the respective partitions of multi-sets in
the reduced model. The condition guarantees that the partition over the CTMC
states inherited from the partiting over the species set (∼SE) will be ordinary
lumpable [2]. Finding the partition ∼SE is polynomial in the size of reaction net-
work O(|R||S|log|S|) This significantly improves the complexity of searching for
the lumpable partition directly over the expanded CTMC.

2.4 Lumping actors in multiplex networks

Lumping techniques can be used as an efficient algorithmic procedure to compute struc-
tural properties of actors within a network. In recent works [15], we use formal reduc-
tions to compute one notion of eigenvector centrality for multiplex MLNs, proposed

3 The algorithm is a variation of the Paige-Tarjan algorithm
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in [18]. The centrality is defined through a 2-map, f -eigenvector centrality, in which
the first component of the map represents the centrality associated to the actors, while
the second component is centrality associated to the layers.

Definition 2. ([18]) Let A ∈ RN×N×L≥0 be the adjacency tensor of an MLN with
weighted, undirected layers, and let α, β > 0 be such that 2

β < (α − 1). Then, de-
fine f = (f1, f2) : RN≥0 × RL≥0 → RN≥0 × RL≥0 as follows:

f1(x, t)i =

(
N∑

j=1

L∑
l=1

Aijlxjtl

) 1
α

for i ∈ VN , f2(x, t)l=

(
N∑
i=1

N∑
j=1

Aijlxixj

) 1
β

for l ∈ VL.

In words, the centrality xi of an actor i is a sum of the centralities of each of its neigh-
bouring actors, weighted by the product of the edge-weight and the centrality of the
layer at which that connection lies. The parameters α and β are introduced in order to
guarantee convergence and respectively well-definedness in case of undirected MLNs. 4

In [18] the centrality vector of the actors and layers is denoted by (x∗, t∗) ∈ RN≥0×RL≥0
which is a limit of an iterative scheme based on the 2-map f .

– (Actor Equivalence) ∼AE⊆ VN × VN is an actor equivalence, where two actors
are lumped, if they have the same f -eigenvector centrality value (i.e., xi ∼AE xj ,
if x∗i = x∗j ). Finding the partition ∼AE is polynomial in the size of the MLN
O(|E|log(|VN | + |VL|)) where |E| denotes the total number of edges in all the
layers [15].

Related Works In [11] the authors propose a unified taxonomy of MLN simplification
techniques. It is worth mentioning that FE, BE and SE can not be considered as
explicit MLN simplification techniques, because they are acting directly at the level of
the Reaction Network. However,AE is a MLN simplification, because it is acting at the
level of actors (it is an aggregation technique based on positional equivalence).

3 Results

3.1 Interacting spreading processes on Multiplex Multi-Layer Networks

In this work we focus on interacting spreading processes, sometimes referred as multi-
spread processes.

Definition 3. Let G be a multiplex. A multispreadMS = (G, IS, P, IC, SR,LIR) is
a tuple composed by:

– A multiplex G with N actors and L layers;
– A set of internal states IS = {IS1, . . . , ISM};
– A set of rates P = {r1, . . . , rR} s.t. for all i ∈ {1, . . . , R}, ri ∈ R+;
– A set of initial conditions IC , IC : {1, . . . , N} → IS;

4 Further discussion on the choice of α and β is beyond the scope of this manuscript and we
refer the interested reader to [18].
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– A set of single actor rules SR. SR rules are in the form ISx
r−→ ISy, where

ISx, ISy ∈ IS and r ∈ P .
– A set of local interaction rules LIR. LIR rules are in the form ISx l ISy

r−→
ISy l ISy where ISx, ISy ∈ IS, l ∈ {1, . . . , L} and r ∈ P .

Where ISx l ISy represents the existence of an edge in layer l between agents that
are in internal state ISx and ISy respectively.

Definition 4. (Compiling a multispread into a RN)
LetMS = (G, IS, P, IC, SR,LIR) be a multispread process, the resulting Reaction
Network RNMS = (S,R) is constructed as follows:

– The set of species S is the union, for all i ∈ {1, . . . , N} of the set of all the internal
states of each actor Acti = {IS1i, . . . , ISMi}.

– The set of reactionsR = RSR∪RLIR is the union of the reactions that we compile
from the single actor rules RSR and the local interaction rules RLIR.

– For each rule sr ∈ SR where sr is in the form ISx
r−→ ISy we build the set of

reactions Rsr = {ISxi
r−→ ISyi | i ∈ {1, . . . , N}}

– For each rule lir ∈ LIR where lir is in the form ISx l ISy
r−→ ISy l ISy we

build the set of reactions Rlir = {ISxi + ISyj
r−→ ISyi + ISyj | (i, j) ∈ E(l)}.

– We set the following initial conditions:

ISxi =

{
1 if IC(i) = ISx,

0 if IC(i) 6= ISx.

3.2 The multispread model

In this work, we evaluate the performance of the lumping techniques reviewed in Sec-
tion 2 to multispreads that arise from MLNs. We will use two different sets of bench-
marks: real-world networks from the Koblenz Network Collection [13], and a set of
synthetic networks. The synthetic networks will have a physical layer (referred as layer
1) built using a power-law degree distribution network generated with a configuration
model with exponent 2.5. In all case studies, the virtual layer (referred as layer 2) is
a copy of the physical layer network with an added percentage of random edges (non-
overlapping with previous edges). We showcase our findings with the aim of obtaining
the maximal aggregation, if not specified differently. The aim of the maximal aggrega-
tion approach is to obtain the smallest possible reduced system. In this work we use the
following multispread inspired by the interacting spreading processes presented in [8].

IS ={US,AS,AI}
P ={δ = 0.6, µ = 0.4, βA = 0.01, βU = 0.4, λ = 0.15}

SR ={AS δ−→ US,AI
µ−→ AS}

LIR ={AS 1
AI

βA−−→ AI
1
AI,US

1
AI

βU−−→ AI
1
AI,

US
2
AI

λ−→ AS
2
AI,US

2
AS

λ−→ AS
2
AS}
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We consider non-degenerate reductions using initial partitions with 3 blocks:
{AI1, . . . , AIN}, {AS1, . . . , ASN} and {US1, . . . , USN}.

3.3 Experimental setup

All the experiments presented in this paper rely on three components. First, a Python
script using the Networkx package [10] is used to generate the synthetic Power-Law
MLNs. The second step is comprised of MATLAB scripts which parse instances into
a series of models for ERODE [4]. ERODE, a state-of-the-art model reduction tool, is
used to compute Backward Equivalence, Forward Equivalence, Stochastic Equivalence
and Actor Equivalence. ERODE provides the following outputs: the partitions that were
computed and the reduced models. We use the state-of-the-art tool StochKit [16] to run
the stochastic. All experiments have been conducted on a MacBook Pro with a 2.6 GHz
Intel Core i7 with 16 GB of RAM.5 Throughout this Section we will use PL-x to refer
to the synthetised MLNs with x being the number of actors. In all the experiments that
involve runs of the stochastic simulations we used time horizon T = 10.

3.4 Size of the reduction

In this set of experiments, we compare the size of the obtained reductions using BE,
FE and SE, applied to the MLN by translating it to a reaction network formalism, using
Def. 4. The results are presented in Table 1. For each instance, we report the percentage
of added edges in the virtual layer, the number of species |S| of the Reaction Network
of the original model (i.e., |S| = 3 ·N , whereN is the number of actors), the number of
species of the reduced model via BE and the reduction ratio (number of species in the
reduced model, divided by the number of species in the original model). Analogously,
in the last three columns we present the size of the reductions obtained with FE, SE, as
well as their reduction ratio.

First, we notice that FE and SE compute the same partitions: this is because FE and
SE both characterise ordinary lumpability and in the case of the UAU-SIS spreading
process that we consider in this work they coincide.

Secondly, we can notice how BE and FE are notions that are not comparable with
each other, as discussed in [6, 2].

In the presented instances, adding more edges results in more refinement. This is ex-
pected to happen because most of the techniques presented exploit symmetries and the
act of adding more edges usually leads to a smaller amount of symmetries in the model.
Ideally, the smaller the reduction ratio the better but, when dealing with instances that
arise from real-world scenarios, it is known that it is rare to find significant reductions
due to their highly non-symmetrical nature. However, we will later show in Section 3.6
that, even with the reduction ratios presented in Table 1, we obtain significant speed-ups
in computing stochastic simulations.

5 The code and examples are available https://github.com/stefanotognazzi/LumpingForMLNs
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Table 1: Size of reductions
Maximal Aggregation Summary of reductions Maximal Aggregation Summary of reductions

Instance Added |S| |S| (BE) BE Ratio |S| (FE/SE) FE/SE ratio Instance Added |S| |S| (BE) BE Ratio |S| (FE/SE) FE/SE ratio

PL-100 5 300 255 85.0% 264 88.0% PL-10000 5 30000 22497 75.0% 25332 84.4%
PL-100 10 300 270 90.0% 282 94.0% PL-10000 10 30000 24138 80.5% 26268 87.6%

PL-500 5 1500 1203 80.2% 1302 86.8% EgoFB 5 8664 420 4.8% 939 10.8%
PL-500 10 1500 1296 86.4% 1389 92.6% EgoFB 10 8664 759 8.8% 1659 19.1%

PL-1000 5 3000 2475 82.5% 2706 90.2% As2000 5 19422 13017 67.0% 13455 69.3%
PL-1000 10 3000 2553 85.1% 2763 92.1% As2000 10 19422 14580 75.1% 14853 76.5%

PL-5000 5 15000 11883 79.2% 13137 87.6% PGP 5 32040 26445 82.5% 27708 86.5%
PL-5000 10 15000 12519 83.5% 13509 90.1% PGP 10 32040 28221 88.1% 28992 90.5%

3.5 Cost of the reduction

In this set of experiments, we show the computational cost (in terms of time) of obtain-
ing the reductions. Results are summarised in Table 2. We show for each instance the
number of species in the original model (|S|) and for each of the proposed techniques
the time (in seconds) required by ERODE to obtain the partitions presented in Table 1.
BE and FE are computationally efficient. SE is polynomial but, because of the added
constraints, in practice it is more computationally costly.

Table 2: Time of reductions
Instance Added |S| BE(s) FE(s) SE(s) Instance Added |S| BE(s) FE(s) SE(s)

PL-100 5 300 0.004 0.005 0.029 PL-10000 5 30000 0.638 0.687 304.188
PL-100 10 300 0.005 0.005 0.035 PL-10000 10 30000 0.663 0.797 289.318

PL-500 5 1500 0.027 0.033 0.400 EgoFB 5 8664 0.098 0.120 1.145
PL-500 10 1500 0.028 0.034 0.470 EgoFB 10 8664 0.097 0.175 2.092

PL-1000 5 3000 0.066 0.070 1.624 As2000 5 19422 0.399 0.632 96.712
PL-1000 10 3000 0.096 0.128 2.447 As2000 10 19422 0.471 0.733 175.666

PL-5000 5 15000 0.289 0.349 59.171 PGP 5 32040 0.884 1.073 409.404
PL-5000 10 15000 0.290 0.399 87.038 PGP 10 32040 0.942 1.043 498.678

3.6 Speeding up stochastic simulations

In this set of experiments, we show the benefits of using the reduced models in terms of
the speed-up of the stochastic simulations. The results are summarised in Table 3. We
conduct stochastic simulations using SSA. All the results are presented in seconds and
the reported time of one run is obtained as the time of a run averaged over a repetition of
5 runs. For each instance, we show the time (in seconds) of computing one run of SSA
on the full model. In the middle columns, we report the time of computing one run of
SSA algorithm for BE, FE and SE reduced models with maximal aggregation. This can
be explained by the fact that the run-time of simulation is superlinear wrt. actor count.
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Table 3: Time of simulation
Time for one SSA run (s) Time for one SSA run (s)

Instance Added Full BE FE SE Instance Added Full BE FE SE

PL-100 5 0.066 0.058 0.064 0.064 PL-10000 5 514.460 193.087 230.441 239.246
PL-100 10 0.064 0.059 0.063 0.062 PL-10000 10 535.360 232.286 264.743 267.900

PL-500 5 0.333 0.269 0.289 0.284 EgoFB 5 48.002 0.102 0.259 0.264
PL-500 10 0.335 0.290 0.311 0.313 EgoFB 10 48.194 0.192 0.742 0.793

PL-1000 5 0.916 0.745 0.826 0.830 As2000 5 215.274 55.684 64.782 66.634
PL-1000 10 0.934 0.787 0.842 0.867 As2000 10 214.124 80.212 87.279 87.460

PL-5000 5 12.873 9.395 10.304 10.317 PGP 5 68.481 51.766 56.884 59.885
PL-5000 10 13.057 10.042 10.938 12.311 PGP 10 70.543 58.104 63.297 65.535

3.7 Approximation of the reduction

In this set of experiments we aim at providing experimental evidence that, despite the
fact that BE in general is an approximation of the stochastic semantics, we can use
that reduction in this scenario as a good approximation of the original solution. We use
synthetised MLNs with 15% of added edges in the virtual layer with a number of actors
ranging from 20 to 200. In order to obtain precision in the solution we computed 1
Million runs of SSA on each of the presented instances. Accuracy results are presented
with respect to the simulated number of actors in each state and compared to the solution
of the original instance. In this set of experiments we fix an initial partition based on
the initial conditions proposed in [8]. In Table 4 we present the average across all runs
of the number of actors in each state at the end of the simulation. In Table 5 we show
the maximum error, in terms of percentage of distance to the solution of the original
instance, that we could observe at all time points. From [2] we know that the reduction
obtained via FE/SE is exact in the sense that it can be used to replicate exactly the
stochastic semantics of the original model. Therefore, we report the results obtained
using BE.

3.8 Reduction at the level of actors

In this set of experiments we show how to obtain the same partition obtainable with
BE lumping at the level of the reaction network by using Actor Equivalence (AE) from
Section 2.4 that acts at the level of the MLN’s actors. We show experimental evidence
that the two reductions coincide when interpreted over the actors. The results are sum-
marised in Table 6. We report the results for the Power-Law MLNs with 5% of added
edges. To facilitate the interpretation of the results we provide in the table, alongside
the number of original species and reduced species, the size in terms of actors of the
MLNs of the obtained partitions.

The advantage of this approach is that Actor Equivalence reduces a model that has a
number of species that is |V |+ |L|, while, using BE on the reaction network we need to
reduce a system such that |S| = 3 · |V |. From a theoretical perspective this fact does not
yield any improvement in terms of complexity but we show in Table 6 that in practice
we obtain a speed up and the ability to scale to larger size networks.
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Table 4: Approximations of reduction
Instance Accuracy Instance Accuracy

PL-20 AI US AS PL-70 AI US AS

Full 1.0516 17.0271 1.9213 Full 14.6530 33.7650 21.5820
BE 1.0532 17.0223 1.9245 BE 14.6513 33.7610 21.5877

PL-30 AI US AS PL-80 AI US AS

Full 3.2101 21.5280 5.2620 Full 12.7763 47.6297 19.5940
BE 3.2082 21.5209 5.2709 BE 12.7791 47.6390 19.5819

PL-40 AI US AS PL-90 AI US AS

Full 2.6129 32.8668 4.5204 Full 11.6084 59.9792 18.4124
BE 2.6187 32.8548 4.5265 BE 11.5948 59.9885 18.4167

PL-50 AI US AS PL-100 AI US AS

Full 7.5197 30.8025 11.6778 Full 19.5981 52.0239 28.3779
BE 7.5192 30.8018 11.6790 BE 19.6470 51.9174 28.4356

PL-60 AI US AS PL-200 AI US AS

Full 7.4002 41.0514 11.5483 Full 27.2781 130.9980 41.7239
BE 7.3935 41.0569 11.5496 BE 27.2851 130.9977 41.7172

Table 5: Max error
Instance BE

PL-20 0.36%
PL-30 0.17%
PL-40 0.22%
PL-50 0.04%
PL-60 0.16%
PL-70 0.05%
PL-80 0.06%
PL-90 0.15%
PL-100 0.25%
PL-200 0.03%

Table 6: Actor Equivalence, 5% added edges
Maximal aggregation Actor Lumping Species Lumping

Instance |S| |S|(AE) Actors (AE) Time (s) |S| full |S| (BE) Actors (BE) Time (s)

PL-1000 1002 827 825 0.028 3000 2475 825 0.096
PL-5000 5002 3963 3961 0.124 15000 11883 3961 0.300
PL-10000 10002 7501 7499 0.369 30000 22497 7499 0.656
PL-50000 50002 38027 38025 1.818 150000 114075 38025 3.896
PL-100000 100002 77489 77487 3.921 300000 232461 77487 7.388
PL-500000 500002 382068 382066 24.049 1500000 1146198 382066 59.850
PL-1000000 1000002 776457 776455 56.244 3000000 ——— O.O.M. ———-

4 Conclusions and Future Works

Stochastic semantics are a key tool to understand and study spreading processes in
networked systems. Analysing interacting spreading processes on complex multiplex
Multi-Layer Networks is computationally costly, if feasible at all. In this work, we
extended a variety of lumping-based automated model reduction techniques to interact-
ing spreading processes on Multiplex Multi-Layer Networks that allows the modeler
to run the stochastic simulations at a cheaper computational cost. Our findings show
experimental evidence that in the context of multispread processes over MLNs, effi-
cient reduction techniques originally designed to exactly preserve differential seman-
tics, faithfully abstract the stochastic semantics. In future work, we plan to investigate
these results from a theoretical standpoint, that will set foundations for exploiting this
scalable approach in practice.
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