
JID:YINCO AID:104788 /FLA [m3G; v1.308] P.1 (1-20)

Information and Computation ••• (••••) ••••••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Automated deep abstractions for stochastic chemical reaction 

networks

Denis Repin a,b, Tatjana Petrov a,b,∗
a Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
b Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2020
Received in revised form 27 May 2021
Accepted 18 July 2021
Available online xxxx

Keywords:
Model abstraction
Stochastic simulation
Chemical reaction networks
Deep learning
Neural architecture search

Predicting stochastic cellular dynamics emerging from chemical reaction networks (CRNs) 
is a long-standing challenge in systems biology. Deep learning was recently used to abstract 
the CRN dynamics by a mixture density neural network, trained with traces of the original 
process. Such abstraction is dramatically cheaper to execute, yet it preserves the statistical 
features of the training data. However, in practice, the modeller has to take care of finding 
the suitable neural network architecture manually, for each given CRN, through a trial-and-
error cycle. In this paper, we propose to further automatise deep abstractions for stochastic 
CRNs, through learning the neural network architecture along with learning the transition 
kernel of the stochastic process. The method is applicable to any given CRN, time-saving 
for deep learning experts and crucial for non-specialists. We demonstrate performance over 
a number of CRNs with multi-modal phenotypes and a multi-scale scenario where CRNs 
interact across a spatial grid.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Reaction networks are a simple but powerful formalism for modeling dynamical systems. For example, the following 
set of reactions constitutes a reaction network with three species S , I , R and three reactions: S → I , S + I → 2I , I → R . 
This simple model is the well-known epidemiological SIR model describing the spread of an infectious disease in well-
mixed population: susceptible (S) may become infected (I), and an infectious species can spread the disease by infecting 
a susceptible, or recovering (R). Each reaction fires with a corresponding rate. A reaction network induces a stochastic 
dynamical system - continuous-time Markov chain (CTMC), describing how the state - a vector enumerating multiplicities 
of each of the species - changes over time due to reaction events. Computationally predicting the distribution of species 
over time from such CTMC is generally challenging. The challenge is especially prominent in systems and synthetic biology 
research: when hypothesising low-level mechanisms of molecular interactions with (chemical) reaction networks, one deals 
with a large number of species, stochasticity and events happening at multiple time-scales. Two major approaches are used 
to analyse such CTMCs. The first approach focuses on computing the transient evolution of the probability related to each 
state of the CTMC numerically. The transient distribution evolves according to the Kolmogorov forward equation (chemical 
master equation in the chemistry literature), and it is typically very difficult to solve the forward equations except for the 
simplest systems. The second approach is based on a statistical estimation of trace distribution and event probabilities of 
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the CTMC by generating many sample traces [1], often referred to as stochastic simulation or Gillespie algorithm (SSA). 
While this method generally allows to trade-off computational tractability with precision, even simulating a single trace 
can still take considerable processor time, especially when some reactions fire at very fast time-scales relative to the global 
time horizon of interest. At the same time, we are often not interested in predictions at such small time-scales or transient 
distributions for each of the species. For all these reasons, it is desirable to develop abstraction techniques for stochastic 
reaction networks, which allow for efficient simulation, yet faithfully abstract the context-relevant emerging features of the 
hypothesised mechanism.

Example 1 (Motivating and running example). The following set of reactions constitutes a reaction network with three species 
G1, G2, P1, and six reactions:

G1
α11−−⇀↽−−
α12

G1 + P1, G2
α21−−→ G2 + P1, P1

β1−→ ∅, G1
εγ12−−⇀↽−−
εγ21

G2, (1)

where 0 < ε � 1. This fast-and-slow network ([2], Eq. 16) models a gene slowly switching between two different expression 
modes. In Fig. 1, we show a sample trajectory for Ex. (1): notice the different magnitudes of species’ abundances and 
times between reaction events. Assume that we are only interested in reproducing the distribution of protein P1 at several 
interesting time points, e.g. at the four time points shown in Fig. 2 (bottom row). Can these distributions be efficiently 
predicted, by abstracting away all reaction steps within a predefined fixed time interval?

Deep abstractions, introduced in [3], propose to use available simulation algorithms to generate a suitable number of 
simulated system traces, and then learn an abstract model from such data. The task of learning the transition kernel for this 
Markov process is modelled as a probability mixture with parameters depending on the system state, and a deep neural 
network is trained on simulated data to parametrise this probability mixture. Such abstract model preserves the statistics of 
the original network dynamics, but runs on a discrete time-scale representing equally distributed time intervals, abstracting 
away all intermediate transitions, which can lead to significant computational savings.

1.1. Contributions

The performance of any deep learning application largely depends on the choice of the neural network architecture, usu-
ally constructed by the user (neural network engineer) through a trial-and-error process. When applying deep abstractions 
proposed in [3], the modeller has to take care of finding the suitable architecture manually, for each given CRN. The main 
contributions of this paper are the following:

• We define a framework for deep abstractions which can be automatically applied to any given CRN model. Beyond the 
framework shown in [3], the neural network architecture search is automated: in parallel to learning the kernel of the 
stochastic process, we learn a neural network architecture, by employing the recent advances on this topic in the deep 
learning community [4,5]. Moreover, in addition to the initial state, the neural network can be parametrised with the 
kinetic rates (as a part of the input).

• We analyse the quality of model reduction on an extended suite of case studies relevant for systems and synthetic 
biology: on large-scale, detailed mechanistic model of signal transduction (Epidermal Growth Factor Receptor - EGFR 
pathway), and a number of small-scale auto-regulatory genetic networks with multi-scale dynamics and multi-modal 
phenotypes.

• We demonstrate how the proposed model abstraction with deep learning can be used for efficient multi-scale modelling 
of complex collective dynamics. More specifically, we describe a simulation of a number of individual agents, each 
occupying one cell in a spatial grid. Each agent is a chemical reaction network (CRN) itself, and agents communicate 
among themselves via shared species that diffuse locally across space. In this setup, we illustrate that our reduction 
enables efficient simulation of a collective motion emerging from the mechanistic description of individual dynamics, 
which would otherwise be impossible. Finally, we point to the limitations and challenges for future works.

It is worth mentioning that the main goal of the automated architecture search proposed in this manuscript is not to 
out-perform any possible man-made architecture used for deep abstractions, but rather to automatise the search of neural 
network architecture for any given input CRN, and thus save time and effort of manual design and trials. The accompanying 
tool is implemented is available as an open source Python library StochNetV2, available on GitHub and described in [6].

1.2. Related works

Different techniques on reducing stochastic CRNs have been proposed in literature and practice over the years. Classical 
limit approximations of deterministic limit, moments or mean-field approximation [7,8] can provide significant computa-
tional savings, but they do not apply to general stochastic CRNs, especially when species distributions emerging over time 
are non-Gaussian, as for example is the case shown in Ex. (1). Moreover, principled model reduction techniques have been 
2
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Fig. 1. Sample trajectory of Ex. (1) network.

Fig. 2. Distribution (histogram) of the protein P1 at times 20, 50, 100, and 200 for Ex. (1) network.

proposed in several aggregation [9–15] and time-scale separation frameworks [16–19]. These techniques are generally based 
on detecting species, reactions or states which are behaviourally indistinguishable or similar. In these methods, the space 
of considered abstractions is typically discrete and as a consequence, it does not allow smooth tuning of abstracted enti-
ties, or control of abstraction accuracy. In other words, the achieved abstraction may or may not be significant, and once 
the method is applied, it is difficult to further improve it, both in terms of abstraction size, and accuracy. This is different 
to deep abstractions, where the abstraction accuracy can be improved by increasing the model size and/or adding more 
training data, and increasing time discretisation interval improves abstraction efficiency.

The idea of deep abstractions, first introduced in [3], has been recently employed for emulating epidemiological processes 
with Mixture Density Networks (MDNs) [20]; However, this work has focused on a single, uni-modal model of epidemics 
and only stationary regime, while our method is generic - applicable to any given CRN. Other abstractions based on statis-
tical analysis of traces, close to the idea of deep abstractions, include [21], who proposed to construct abstractions using 
information theory to discretise the state space and select a subset of all original variables and their mutual dependencies 
(a Dynamic Bayesian Network is constructed to produce state transitions). Another statistical approach to approximate dy-
namics of fast-and-slow models was developed in [22], where Gaussian Processes are used to predict the state of the fast 
equilibrating internal process as a function of the environmental state. It is worth noting that all the mentioned reduction 
techniques, except from the exact frameworks based on syntactic criteria, such as in [12,9], do not guarantee error bounds 
a priori.

2. Background and preliminaries

In this Section, we briefly recall the notions used throughout this manuscript: chemical reaction networks equipped with 
stochastic semantics (CRNs), neural networks (NNs), and mixture density networks (MDNs). Set of natural numbers will be 
denoted by N and reals by R. For presentation clarity, some notation will not be uniquely used throughout (e.g. we will 
use x to represent the species multiplicity vector that is a state of a CRN and at the same time we will use x to represent 
the input of a NN); However, each variable will be uniquely and clearly referred to in given context.

2.1. Stochastic chemical kinetics

Chemical reaction networks (CRN) are a simple yet powerful and versatile formalism for modelling population dynamics, 
used across different application domains, ranging from cancer biology to theoretical ecology, including modelling spreading 
processes such as epidemics.
3
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Definition 1 (CRN). A Chemical Reaction Network is a pair (S, R), such that S = {S1, . . . , Sm} is a finite set of species, and 
R = {r1, . . . , rr} is a finite set of reactions. The state of a system can be represented as a multi-set of species, denoted by 
x = (x1, ..., xm) ∈Nm . Each reaction is a triple r j ≡ (a j, ν j, c j) ∈Nm ×Nm ×R≥0, written down in the following form:

a1 j S1, . . . ,amj Sm
c j→ a′

1 j S1, . . . ,a′
mj Sm, such that ∀i.a′

i j = aij + νi j,

where the vectors a j and a′
j are respectively the consumption and production vectors due to jth reaction, vector ν j specifies 

the net-change upon the reaction r j (if the jth reaction occurs, after being in state x, the next state will be x′ = x + ν j , and 
it can occur only if sufficiently many reactants are available, i.e. xi ≥ aij for i = 1, . . . , m). Finally, c j is the respective kinetic 
rate. In stochastic chemical kinetics used for modelling molecular interactions, the existence of reaction rates is justified 
by the laws of physical chemistry, and reaction lists are equipped with the stochastic semantics that is valid under mild 
physical assumptions [1].

Stochastic semantics. The species multiplicities follow a continuous-time Markov chain (CTMC) {ηt}t≥0, defined over the 
state space S = {x | x is reachable from x0 by a finite sequence of reactions from {r1, . . . , rr}}. In other words, the probability 
of moving to the state x + ν j from x after time 
 is

P(ηt+
 = x + ν j | ηt = x) = λ j(x)
 + o(
),

with λ j the propensity of jth reaction, assumed to follow the principle of mass-action: λ j(x) = c j
∏m

i=1

( xi
ai j

)
, and o(
)




negligible for infinitesimally small 
. The binomial coefficient 
( xi

ai j

)
reflects the probability of choosing aij molecules of 

species Si out of xi available ones.

Computing the transient. Using the vector notation ηt ∈Nn for the marginal of process {ηt}t≥0 at time t , we can compute 
this transient distribution by integrating the chemical master equation (CME). Denoting by p(t)(x) = P(ηt = x), the CME for 
state x ∈Nm reads

d

dt
p(t)(x) =

r∑
j=1,x−ν j∈S

λ j(x − ν j)p(t)(x − ν j) −
r∑

j=1

λ j(x)p(t)(x). (2)

The solution may be obtained by solving the system of differential equations, but, due to its high (possibly infinite) di-
mensionality, it is often statistically estimated by simulating the traces of {ηt }, known as the stochastic simulation (SSA) or 
Gillespie algorithm in chemical literature [1]. As the statistical estimation often remains computationally expensive for de-
sired accuracy, for the case when the deterministic model is unsatisfactory due to the low multiplicities of many molecular 
species [23], different further approximation methods have been proposed, major challenge to which remains the quantifi-
cation of approximation accuracy (see [24] and references therein for a thorough review on the subject).

2.2. Neural networks

In the last decade, deep neural networks (DNNs, NNs) gathered a lot of attention from researchers as well as from 
industry, bringing breakthroughs in various application areas, such as computer vision, time-series analysis, speech recogni-
tion, machine translation, etc. Neural networks are well known as a powerful and versatile framework for high-dimensional 
learning tasks. The key feature of neural networks is that they can represent an arbitrary function, mapping a set of input 
variables (x1, . . . , xn) to a set of output variables (y1, . . . , ym). Further we denote them as x and y for simplicity.

Neural networks are typically formed by composing together many different functions. The model is associated with a 
directed acyclic graph describing how the functions are composed together. For example, we might have three functions 
f1, f2, f3 connected in a chain to form f (x) = f3( f2( f1(x))). In this case, f1 is called the first layer of the network, f2
is called the second layer, and so on. The outputs of each layer are called features, or latent representation of the data. By 
adding more layers and more units within a layer, a deep network can represent functions of increasing complexity [25].

In particular, each layer usually computes a linear transformation W x + b where W is a weight matrix and b is bias 
vector. Additional nonlinearities are inserted in between the layers which allow the network to represent arbitrary nonlinear 
functions (see the illustration in Fig. 3).

NNs are trained on a set of training examples {(x, y)} with the aim not to memorize the data, but rather to learn the 
underlying dependencies within the variables, so that the output y can be predicted for unseen values of x. During training, 
the weights in a network are adjusted to minimize the learning objective - loss function - on training data. The quality of a 
trained model is usually measured on unseen (test) data, which is addressed as the model’s generalization ability.

2.3. Mixture density networks

However, conventional neural networks perform poorly on a class of problems involving the prediction of continuous 
variables, for which the target data is multi-valued. Minimising a sum-of-squares error encourages a network to approximate 
the conditional average of the target data, which does not capture the information on the distribution of output values.
4



JID:YINCO AID:104788 /FLA [m3G; v1.308] P.5 (1-20)

D. Repin and T. Petrov Information and Computation ••• (••••) ••••••
Fig. 3. A single layer of a neural network. Outputs are computed as a linear transformation Wx + b followed by a non-linear activation function φ.

Fig. 4. Mixture Density Network structure. Given x, neural network outputs values μi and σi , i = 1, ..., m that define m Gaussian distributions. Weighted by 
mixing coefficients αi , they form a mixture density - conditional probability density p(y|x).

Mixture Density Networks (MDN), proposed in [26], are a class of models which overcome these limitations by com-
bining a conventional neural network with a mixture density model, illustrated in Fig. 4. This neural network provides the 
parameters for multiple distributions, which are then mixed by the weights (also provided by the network). Therefore Mix-
ture Density Networks can in principle represent arbitrary conditional distributions, in the same way that a conventional 
neural network can represent arbitrary non-linear functions.

To construct an abstract model defined by a Markov process, we need to learn its transition kernel. In other words, 
given a vector ηt describing the system state at time t , we wish to predict the state ηt+
t , which follows a distribution, 
conditioned on ηt . Therefore we can use Mixture Density Networks to learn the conditional distribution p(ηt+
t |ηt).

3. Deep abstractions

Here we present the main steps of the abstraction technique originally proposed in [3].

3.1. Abstract model

Let {ηt}t≥0 be the CTMC describing a CRN with the state space S = Nm . As mentioned earlier, with the abstract model 
we wish to reproduce the dynamics of the original process at a fixed temporal resolution. Let {η̃i}i∈N be a discrete-time 
stochastic process such that

η̃i := ηt0+i
t ∀i ∈N (3)

with fixed time interval 
t and initial time t0. The resulting process η̃i is a time-homogeneous discrete-time Markov chain 
(DTMC), with a transition kernel

Kd(s, s0) = P (η
t = s | η0 = s0) ∀s0, s ∈ S. (4)

Further, two following approximations take place:

1. The state space S =Nm is embedded into the continuous space X̃ =Rm≥0. The abstract model takes values in X̃ .

2. The kernel Kd is approximated by a new kernel K (x|x0) operating in the continuous space X̃ . The kernel K (x|x0) is 
modelled by a MDN.
5
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To evaluate the abstract model, we introduce a time-bounded reward function r that monitors the properties we wish 
to preserve in the reduced model. This function, therefore, maps from the space of discrete-time trajectories S M to an 
arbitrary space T (here M is an upper bound on the length of discrete-time trajectories, and η̃[0,M] denotes time-bounded 
trajectories). For example, it can be a projection, counting the populations of a subset of species, or it can take Boolean 
values corresponding to some linear temporal logic properties. Note that r(η̃[0,M]) is a probability distribution on T .

As an error metric we use the distance d between the abstract distribution and r(η̃[0,M]), which is evaluated statistically, 
as the distance among histograms, h [27]. In our experiments as a distance d we use L1 metric:

d(X, Y ) =
∑

z

|hX (z) − hY (z)|, (5)

or Intersection over Union (IoU) distance:

d(X, Y ) =
∑

z min(hX (z),hY (z))∑
z max(hX (z),hY (z))

. (6)

Here is the formal definition of model abstraction [3]:

Definition 2. Let {ηi}M
i=0 be a discrete time stochastic process over an arbitrary state space S , with M ∈N+ a time horizon, 

and let r : S M → T be the associated reward function. An abstraction of (η, r) is a tuple ( S̄, p, ̄r, η̄ = {η̄i}M
i=0) where:

• S̄ is the abstract state space;
• p : S → S̄ is the abstraction function;
• r̄ : S̄ M → T is the abstract reward;
• η̄ = {η̄i}M

i=0 is the abstract discrete time stochastic process over S̄ .

Let ε > 0. η̄ is said to be ε-close to η with respect to d if, for almost any s0 ∈ S ,

d(r(η̃[0,M]), r̄(η̄[0,M])) < ε conditioned on η0 = s0, η̄0 = p(s0) (7)

The simplest choice for the abstraction function could be an identity mapping. Alternatively, one can follow [21] to 
identify a subset of species having the most influence on the reward function. Inequality (7) is typically experimentally 
verified simulating a sufficiently high number of trajectories from both the original system η̃ and the abstraction η̄ starting 
from a common initial setting. As there is no way to ensure that the inequality holds for almost any s0 in S , we evaluate 
it for many different initial settings that the model did not see during training. Evaluation examples are presented in 
supplementary material.

Example 2 (Running example cont’d). The abstract model for our example shown in (1) as follows:

• The abstract state space S̄ is R3
≥0, i.e. the continuous approximation of S =N3;

• The abstraction function p is the identity function that maps each point of S into its continuous embedding in S̄;
• The reward function r is the projection on the protein P1;
• The discrete time stochastic process η̄ = {η̃}M

i=0 is a DTMC with transition kernel represented by an MDN trained on 
simulation data.

3.2. Dataset generation

We build our datasets as sets of pairs D := {(x, y)} where each y is a sample from the distribution P (ηt0+
t | ηt0 = x), 
i.e. each pair corresponds to a single transition in discrete-time trajectories η̃. For this, we simulate trajectories starting from 
random initial settings from t0 to t0 + M
t , and take the consecutive states (ηt0+i
t , ηt0+(i+1)
t), i ∈ {0, ..., M − 1} as (x, y)

pairs.

Example 3 (Running example: dataset). For the example CRN network shown in Eq. (1), we simulate 100 trajectories for each 
of 100 random initial settings. We run simulations up to 200 time units, and fix the time step 
t to 20 time units for both 
training and evaluation (histogram) dataset. Therefore the time horizon M for evaluation is 10 steps.

3.3. Model training

Let M be a parameterized family of mixture distributions and gθ be an MDN, where θ are network weights. Then, for 
every input vector x, gθ (x) ∈ M. During training, weights θ are optimized to maximize the likelihood of samples y w.r.t. 
the parameterized distribution gθ (x), so that the kernel Kd is approximated by K :
6
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Fig. 5. Ex. (1): Sample histograms of protein P1 concentration after 1 time step (left) and 9 time steps (right). (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

Fig. 6. Ex. (1): Mean histogram distance (IoU) of protein P1 concentration for different time-lags.

Kd(s | s0) = P (η
t = s | η0 = s0) ≈ P (gθ (s0) ∈ Bs) := K (Bs | s0) (8)

where Bs := {x ∈ X̃ | ‖x − s‖ < 1
2 } is the infinity norm ball with radius 1

2 centered in s, needed to properly compare approxi-
mating continuous distribution with the original discrete distribution. Though model training is a relatively time-consuming 
task, once we have a trained model, sampling states are extremely fast, especially with the use of highly parallelized GPU 
computations.

3.4. Abstract model simulation and evaluation

With a trained MDN gθ , for an initial state ηt0 , the distribution of the system state at the next time instant t0 + 
t is 
given by gθ (ηt0 ), and the values of the next state η̄1 can be sampled from this distribution. These values then can be used 
to produce the next state, and so on:

η̄i+1 ∼ gθ (η̄i)

Every iteration in this procedure has a fixed computational cost, and therefore choosing 
t equal to the timescale of 
interest, we can simulate arbitrarily long trajectories at the needed level of time resolution, without wasting computational 
resources.

To evaluate the abstract model, we chose a number of random initial settings and for every setting we simulate (suf-
ficiently many) trajectories from both the original and the abstract model up to the time horizon M
t , evaluating the 
distance (7). Note that we train the MDN to approximate the kernel for a given 
t , i.e. it approximates model dynamics 
step-wise. However, we can evaluate the abstract model using the reward function on a time span longer than 
t . As noted 
in [3], the idea is that a good local approximation of the kernel should result in a good global approximation on longer time 
scales.

Example 4 (Running example: evaluation). For the histogram dataset, we simulate 10000 trajectories with the stochastic sim-
ulation Gillespie algorithm (SSA) up to time 200 for 25 random initial settings, and extract state values of the discrete-time 
process η̃[0,M] with 
t fixed to 20 time units.

With the trained MDN, we simulate 10000 traces starting from the same initial settings for 10 consecutive steps and 
therefore obtain the values η̄[0,M] (Fig. 5).

Finally, we can evaluate the inequality (7), and estimate the average histogram distance. For every time-step i in range 
from 1 to M = 10, we average the distance d(r(η̃i), ̄r(η̄i)) over 25 initial settings. This displays the performance of the 
7
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abstract model in predicting for many time steps in future, see Fig. 6. Note that, to draw the next state η̄i+1, the model uses 
its own prediction from the previous step.

4. Automated architecture search

The performance of machine learning algorithms depends heavily on the latent representation, i.e. a set of features. In 
contrast to simple machine learning algorithms, neural networks learn not only a mapping from representation to output 
but also the representation itself. As mentioned above, neural networks form the desired complex function from many small 
transformations represented by different layers. Each layer produces a new representation of the input features, which then 
can be used as an input to the following layers. The final representation, therefore, depends on the layer types used across 
the network, as well as on the graph describing connections between these layers.

Usually, neural networks are manually engineered by the experts via the trial-and-error procedure, which is a very time-
consuming and error-prone process. Complex tasks require models of large size, which makes model design even more 
challenging.

Convolutional neural networks are a good example of a gain that comes from introducing incremental improvements in 
the network architecture. Step by step, in a series of publications, better design patterns were developed, improving the 
quality of models and reducing the computational demands. Even though a new model outperforms previous approaches, 
one could never argue that it is optimal. This raises an interest in the Neural Architecture Search (NAS) algorithms that help 
to find the near-optimal model configuration given a task.

One of the first successes in this field was achieved in [28] where reinforcement learning was applied to discover novel 
architectures that outperformed human-invented models on a set of tasks such as image classification, object detection, 
and semantic segmentation. It is worth to mention that it took 2000 GPU days of training to achieve this result. Later 
publications [4,5] introduced a gradient-based approach which significantly reduced required computational powers and 
allowed to achieve compatible results within one to two days using a single GPU.

In this work, we propose the algorithm inspired by [4,5] for the automated architecture design of MDN. Given a dataset 
and only a few hyper-parameters, it learns the architecture that best fits the data.

4.1. Our framework for automated neural network search

Broadly speaking, all NAS methods vary within three main aspects: search space, search policy, and evaluation policy.
Search space defines which architectures can be represented in principle. Therefore, to define a search space we fix a set 

of possible operation/layer candidates, a set of rules to connect them, and the architecture size (number of connections/lay-
ers).

Search policy describes a strategy of exploring the search space, e.g. random search, Bayesian optimization, evolutionary 
methods, reinforcement learning (RL), or gradient-based methods.

Evaluation policy includes the set of metrics of interest, such as accuracy on test data, number of parameters, latency, 
etc.

4.1.1. Search space
Similarly to DARTS architecture search method, proposed in [4], we consider a network that consists of several compu-

tational blocks or cells. A cell is a directed acyclic graph consisting of an ordered sequence of Cs nodes. Each node x(i) is
a hidden state (latent representation) and each directed edge (i, j) is associated with some operation o(i, j) that transforms 
x(i) .

Each cell has two input nodes and a single output node. The input nodes are the outputs of the previous two cells (or 
the model inputs if there are no previous cells). The output node is obtained by applying an aggregating operation (e.g. sum
or mean) on the intermediate nodes (see Fig. 9). Each intermediate node is computed based on all the predecessors:

x( j) =
∑
i< j

o(i, j)(x(i)) (9)

A special zero operation is also included to indicate a lack of connection between two nodes.
To allow expanding the feature space within a network, we define two kinds of cells: normal cell preserving the number 

of neurons (features) received at inputs, and expanding cell that produces d times more activations, where d is an expansion 
multiplier parameter, see Fig. 8 for illustration. To serve this purpose, additional expanding operations (e.g. Dense layer) are 
applied to the inputs of a cell to produce the first two (input) nodes of the desired size. The very first cell is usually an 
expanding cell, and the rest are normal.

Therefore, our model is defined by the number of cells Cn , cell size Cs , expansion multiplier d, and the set of operations 
on the edges. We consider Cn , Cs and d to be hyper-parameters defining the model backbone, and fix the set of operation 
candidates. The task of architecture search thus reduces to learning the operations o(i, j) on the edges of each cell.

The set of all operation candidates in our setting includes Dense layer (with activation or not), Element-wise layer, Gated 
Linear Unit, ReLU activation, Swish activation, Identity (skip-connection), Zero-operation (no connection) (see Fig. 7). Users can 
8
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Fig. 7. Operation candidates.

Fig. 8. Learning a computational cell. a): Operations connecting internal states are unknown and set to a mixture of candidate operations (coloured edges). 
Every state is connected to all its predecessors. b): During training, the weights for candidates are adjusted to prioritize the most important operations. c):
Operations with the highest weights are selected for every edge. Further, only two edges with the highest scores are selected to be inputs for each state.

Fig. 9. Sample cell structure.

easily select a subset of these operations black-listing out others, as well as implement new ones. For example, we can 
exclude activation functions and use non-activated (Dense) layers and vice-versa.

Unlike the original works on automated architecture search ([4], [5]) targeting convolution architectures for two-
dimensional image data, the choice of available candidates operating on one-dimensional data such as ours is only a dense 
layer architecture. For this reason, we have created our own Element-wise layer, and we added GatedLinearUnit layer which 
is widely used in attention-like mechanisms. Some NAS algorithms do not include activation functions to candidate oper-
ations and use activated (and sometimes non-activated) layers instead. To achieve more search flexibility, we include two 
activation functions: ReLU (most common, simple yet powerful) and Swish (reported to work better than ReLU [29]). Other 
(Zero and Identity) were inspired from the original DARTS algorithm.
9
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4.1.2. Search strategy
The discrete search space we constructed leads to a challenging combinatorial optimisation problem, especially if we 

search for a model that is deep enough. As a neural network performs a chain of operations adjusted to each other, replacing 
even a single one requires a complete re-training. Therefore, each configuration in exponentially large search space should 
be trained separately. Gradient-based methods tackle this issue by introducing a continuous relaxation for the search space 
so that we can leverage gradients for effective optimization.

Let O = {o1, . . . , oN} be the set of N candidate operations (e.g. dense, identity, zero, etc.). To represent any architecture 
in the search space, we build an over-parameterized network, where each unknown edge is set to be a mixed operation 
mO with N parallel paths.

First, we define weights for the edges as a softmax over N real-valued architecture parameters αi (note that outputs of 
softmax operation are positive and sum up to one, therefore we can treat weights pi as probabilities):

pi =
N∑

i=1

exp(αi)∑
j exp(α j)

. (10)

For each mO , only one operation (path) is sampled according to the probabilities pi to produce the output. Path binarization 
process defined in [5] is described by:

mBinary
O (x) =

N∑
i=1

gioi(x) =

⎧⎪⎨
⎪⎩

o1(x) with probability p1,

. . .

oN(x) with probability pN

(11)

where gi are binary gates:

g = binarize(p1, ..., pN) =

⎧⎪⎨
⎪⎩

[1,0, . . . ,0] with probability p1,

. . .

[0,0, . . . ,1] with probability pN .

(12)

In this way, the task of learning the architecture reduces to learning a set of parameters αi within every cell. The final 
network is obtained by replacing each mixed operation mO by the operation oi∗ having the largest weight: i∗ = arg maxiαi .

4.1.3. Optimization
After building an over-parameterised network, our goal is to jointly optimise the architecture parameters α and the 

weights w within all mixed operations. As discussed in [4], the best model generalisation is achieved by reformulating our 
objective as a bi-level optimisation problem. We minimise the validation loss Lval(w∗, α∗) w.r.t. α∗ , where the weights w∗
are obtained by minimising the training loss Ltrain(w, α∗). In other words, training is performed by alternating two separate 
stages for several epochs each, see Fig. 10.

When training weight parameters, we first freeze the architecture parameters α. Then for every example in the training 
dataset, we sample binary gates according to (12) and update the weight parameters of active paths via standard gradient 
descent.

When training architecture parameters, we freeze the weight parameters and update the architecture parameters on 
validation data. For every batch, binary gates are sampled w.r.t. updated architecture parameters.

However, due to the nature of the binarization procedure, the paths probabilities pi are not directly involved in the 
computational graph, which means that we can not directly compute gradients

∂L

∂αi
=

N∑
j=1

∂L

∂ p j

∂ p j

∂αi
(13)

to update αi using the gradient descent. As it was proposed in [5,30], we update the architecture parameters using the 
gradient w.r.t. its corresponding binary gate gi , i.e. using ∂L/∂ gi instead of ∂L/∂ pi in (13).

Example 5 (Running example: architecture search). We search for the network consisting of 2 cells each of size 2, the first cell 
is an expanding cell. We train for 100 epochs in total: first 20 epochs only networks weights are updated, and the following 
80 epochs training is performed as on Fig. 10. See Fig. 11 for the example of learned architecture.

5. Implementation

We implemented the proposed abstraction framework as python library StochNetV2 available openly at GitHub and 
described in detail in [6]. The library has implementations for all parts of the workflow:
10
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Fig. 10. Optimization stages. Left: Weight parameters w are updated on training data while α parameters are frozen. Right: Architecture parameters α are 
updated on validation data while w parameters are frozen.

Fig. 11. Ex. (1): Learned network structure.

• defining a custom CRN model or importing SBML/Kappa file,
• producing CRN trajectories and creating datasets for training and evaluation,
• training custom models and automated architecture search,
• model evaluation,
• generating traces with trained model,
• various visualisations (traces, histograms, mixture parameters, architecture design, model benchmarking etc.).

To simulate traces more effectively, we provide scripts that run many simulations in parallel using multi-threading routines.
We use luigi [31] package as a workflow manager, which allows creating complex pipelines and managing complex 

dependencies. Neural networks, random variables, and optimisation algorithms are implemented in TensorFlow [32] and 
deep learning framework.

5.1. CRN models and simulation data

CRN models are handled by gillespy python library [33], which allows to define a custom class for model or import a 
model in SBML format. Note that not all models can be imported correctly, due to high variability of the SBML format. In 
those cases one can use a custom class with some pre-processing of the imported model.

Simulated trajectories are split into training examples (x, y) := (η̃i, η̃i+1). As neural networks show better convergence 
when the training data is standardised so that it varies in a reasonable range (e.g. [-1, 1] or [0, 1]) or has zero mean and 
variance, we apply a preprocess step to the input data such that it is scaled to a desired range. Then it is split into training 
(80%) and validation (20%) parts. The training dataset is used to optimise network weights, and validation dataset is used to 
optimise architecture parameters.

To increase generalisation capabilities of the model, it is important to build the dataset that covers the most variability 
of the original process. Although having more training data is always beneficial for a model, it increases training time. 
Therefore, depending on the variation of trajectories starting from the same initial conditions, we might prefer to run a 
few simulations for many initial conditions or more simulations for fewer initial conditions. When generating the dataset 
for evaluation, to make histograms more consistent, we usually simulate much more trajectories (from 1000 to 10000) for 
several initial settings.
11
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Table 1
Execution time required to complete each step of the abstraction pipeline for differ-
ent models. The last two rows display the difference in simulation times between the 
Gillespie SSA algorithm and the MDN abstract model. All simulations here performed 
in similar conditions: for every model we simulate the same number of trajectories 
up to the same time horizon (typically 10-20 time steps 
t), using the same number 
of CPU cores.

Task Time

EGFR Gene X16

Generate training data 820.8 s 999.5 s 198.7 s
Format dataset 1.32 s 0.72 s 0.66 s
Train model 213 min 25 min 49 min
Generate hist. data (SSA) 46.8 s 9825.4 s 1274.5 s
Generate hist. data (MDN) 41.3 s 19.4 s 37.7 s

5.2. Network structure and computational cells

In our experiments, we learn the network typically constructed from two to three computational cells each of size 2 to 
4. The first cell is expanding with a multiplier in a range from 10 to 20, and other cells are normal cells. Having multiple 
cells is not necessary, so it may consist of only one (larger) cell.

A computational cell described in the previous sections may also be altered. First, the expanding operations in the begin-
ning of a cell can be represented either by Dense layers or by identity operations with tiling. For instance, for a multiplier 2 
it transforms a vector (x1, x2, ..., xn) into a vector (x1, x1, x2, x2, ..., xn, xn). Second, we can vary the number of intermediate 
nodes of a cell being aggregated to produce the output (e.g. all intermediate nodes or the last one, two, etc.), as well as 
the aggregating operation itself (e.g. sum or mean). Smaller number of aggregated nodes may lead to smaller cells after 
removing redundant connections at the final stage of architecture selection.

5.3. Random variables and MDN training

Our implementation has various random variables from Gaussian family: Normal Diagonal, Normal Triangular, Log-Normal 
Diagonal. Different combinations of these variables can be selected as the components for the mixture distribution, as long 
as their samples have the same dimensionality. In our experiments, we usually use from 5 to 8 components of Normal 
Diagonal variables. Replacing 2-3 Normal Diagonal components with the same number of Normal Triangular components 
sometimes improves model quality, though slows down both training and simulation times.

When training the architecture search, we have three main stages:

• heat-up stage, when weight parameters are trained for 10-20 epochs without updating the architecture parameters,
• architecture search stage, when weight parameters and architecture parameters are updated as described in NAS section 

(see Fig. 10), for 50 to 100 epochs in total, each turn of updating weight/architecture parameters typically lasts 3 to 5 
epochs,

• fine-tuning stage, when the final architecture is fine-tuned for 10 to 20 epochs.

6. Experimental results

In this Section, we report the performance of the proposed method over three case studies: one reaction network mod-
elling a crosstalk between two signalling pathways, and two reaction networks modelling gene regulatory dynamics with 
multimodal phenotypes. See Table 3 for an overview of the number of species, number of reactions, and number of modes 
in the steady-state, as well as the chosen time unit, for each of the three case studies.

We report the execution time required to complete each step of the abstraction pipeline in Table 1, the execution times 
required to simulate trajectories in Table 2, and the histogram distances in Table 3.

For all models, we set the hyper-parameters to the following values: cell size Cs = 2, number of cells Cn = 2, expansion 
multiplier d = 20. The user can opt to use these default values for any given CRN. However, there is a flexibility to change 
them. For each given example, our choice of hyper-parameters – Cs and Cn in ranges from two to five, the expansion 
multiplier up to d = 30 – was guided by the following heuristic exploration. We first choose small model size, hence with 
small parameters Cs, Cn and d that determine the depth and width of the neural network architecture, respectively. Then, 
if the abstract model performs poorly on both test and training data, we increase model size. In case the performance is 
good on train data and unsatisfactory on test data, the model is too large (or data-set too small), so we decrease model size 
again.
12
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Table 2
Execution time (seconds) required to simulate trajectories of 25 time steps starting 
from the same initial conditions for EGFR model (
t = 0.5), Gene model (
t = 400). 
All simulations performed on CPU using the same number of parallel threads. (1): 
100 initial settings, 100 trajectories per setting, (2): 10 initial settings, 1000 trajecto-
ries per setting, (3): 1000 initial settings, 10 trajectories per setting, (4): 1000 initial 
settings, 1000 trajectories per setting.

EGFR Gene

SSA MDN SSA MDN

104 traces (1) 83.6 8.9 1952.8 1.5
104 traces (2) 13.1 8.9 2745.9 1.5
104 traces (3) 796.7 8.9 2076.1 1.5
106 traces (4) 962.3 900.9 TO(> 8 h) 148.1

Table 3
Histogram distances between trajectories of SSA and MDN models. Distances are averaged over 
10000 sampled trajectories for each of the 25 random initial settings. Self-distance for the 
SSA simulations is presented as a reference value, reflecting the error margin arising due to 
distributions being obtained by statistical sampling. For all models, we set the following hyper-
parameters: cell size Cs = 2, number of cells Cn = 2, expansion multiplier d = 20.

Time horizon EGFR
(#sp.,#r.)=(23, 25) 

t = 0.5

Gene
(#sp.,#r.)=(4, 6) 

t = 400

X16
(#sp.,#r.)=(4, 6) 

t = 20

3 steps 10 steps 3 steps 10 steps 3 steps 10 steps

SSA (self) 0.043 0.118 0.152 0.168 0.129 0.137
MDN 0.088 0.286 0.197 0.206 0.174 0.153

6.1. EGFR

Epidermal growth-factor receptor (EGFR) reaction model of cellular signal transduction, with 25 reactions and 23 differ-
ent molecular species (Figs. 12–15):

R + EG F
k1 f−−⇀↽−−
k1b

Ra

2Ra
k2 f−−⇀↽−−
k2b

R2

R2
k3 f−−⇀↽−−
k3b

R P

R P
v4∗R P/(k4+R P )−−−−−−−−−→ R2

R P + P LC g
k5 f−−⇀↽−−
k5b

P RLC g

R P LC g
k6 f−−⇀↽−−
k6b

R P LC g P

R P LC g P
k7 f−−⇀↽−−
k7b

P LC g P + R P

P LC g P
v8∗P LC g P/(k8+P LC g P )−−−−−−−−−−−−−−→ P LC g

Grb + R P
k9 f−−⇀↽−−
k9b

RG

RG + S O S
k10 f−−⇀↽−−
k10b

RG S

RG S
k11 f−−⇀↽−−
k11b

G S + R P

G S
k12 f−−⇀↽−−
k12b

Grb + S O S

Shc + R P
k13 f−−⇀↽−−
k13b

R Sh

R Sh
k14 f−−⇀↽−− R ShP (14)

k14b

13
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Fig. 12. Three sample trajectories of EGFR network starting from same initial state for 100 time steps, each of duration 
t = 0.5 time units.

Fig. 13. EGFR: trajectories simulated by Gillespie algorithm (dashed lines) and MDN (full lines) for 50 consecutive time steps, 
t = 0.5.

R ShP
k15 f−−⇀↽−−
k15b

R P + ShP

ShP
v16∗ShP/(k16+ShP )−−−−−−−−−−−−→ Shc

R ShP + Grb
k17 f−−⇀↽−−
k17b

R ShG

R ShG
k18 f−−⇀↽−−
k18b

ShG + R P

S O S + R ShG
k19 f−−⇀↽−−
k19b

R ShG S

R ShG S
k20 f−−⇀↽−−
k20b

ShG S + R P

Grb + ShP
k21 f−−⇀↽−−
k21b

ShG

ShG + S O S
k22 f−−⇀↽−−
k22b

ShG S

ShG S
k23 f−−⇀↽−−
k23b

G S + ShP

R ShP + G S
k24 f−−⇀↽−−
k24b

R ShG S

P LC g P
k25 f−−⇀↽−−
k25b

P LC gl
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Fig. 14. Simulation times for EGFR model. Left: MDN model, right: Gillespie simulation. Times are measured to simulate traces of length 5 for different 
combinations of number of initial settings and number of traces for each setting.

Fig. 15. EGFR: learned network structure. Gray rectangles represent input nodes, blue - intermediate nodes, green and yellow - output nodes (or cell inputs). 
Intermediate nodes compute the sum of values on incoming edges, output nodes - the average.

6.2. Gene

Self-regulated gene network [34,3]: a single gene G is transcribed to produce copies of a mRNA signal molecule M, which 
are in turn translated into copies of a protein P; P acts as a repressor with respect to G - it binds to a DNA-silencer region, 
inhibiting gene transcription (Figs. 16–20).

G
kprodM−−−→ G + M

M
kprodP−−−→ M + P

M
kdegM−−−→ ∅

P
kdeg P−−−→ ∅

G + P
kbindP−−−→ Gb

Gb
kunbindP−−−−→ G + P

(15)

6.3. X16

The following fast-slow network ([2]) displays interesting dynamics with multimodal species distribution changing 
through time, as well as for different initial settings:

G1
α11−−⇀↽−−
α12

G1 + P1

G2
α21−−→ G2 + P1

P1
β1−→ ∅

G1
εγ12−−⇀↽−−
εγ21

G2, 0 < ε � 1

(16)

Network (16) may be interpreted as describing a gene slowly switching between two expressions G1 and G2. When in state 
G1, the gene produces and degrades protein P1, while when in state G1, it only produces P1, but generally at a different 
rate than when it is in state G1. Furthermore, P1 may also spontaneously degrade (Figs. 21–25).
15
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Fig. 16. Gene: sample trajectory of gene regulatory network Eq. (15).

Fig. 17. Gene: mean histogram distance (intersection over union) averaged over 25 different initial settings.

Fig. 18. Gene: histograms of protein P concentration after 5 time steps (left) and 25 time steps (right).

7. Multi-scale simulation with deep abstractions

Bridging from microscopic to macroscopic behaviours is a prominent concept across all of science, and especially biology, 
with major challenges being scalability, error propagation across scales and model validation [35]. We ask if deep abstrac-
tions can facilitate ‘in silico’ modelling of a population of reaction networks. For this purpose, we propose a simulation 
of multiple CRN instances over a (spatial) grid with communication via shared species diffusing across neighbouring grid 
nodes. We implement a concrete scenario of honeybee colony defense, in which a trade-off between worker loss and effi-
16
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Fig. 19. Gene: simulation times for MDN model (left) and Gillespie simulation (right). Times are measured to simulate traces of length 5 for different 
combinations of number of initial settings and number of traces for each setting.

Fig. 20. Gene: learned network structure. Gray rectangles represent input nodes, blue - intermediate nodes, green and yellow - output nodes (or cell inputs). 
Intermediate nodes compute the sum of values on incoming edges, output nodes - the average.

Fig. 21. Sample trajectory of X16 network.

cient defense is not yet fully understood [36].1 We model the mechanism of each bee’s defense as a reaction network, and 
we simulate the propagation of pheromone over a spatial grid: we first spread groups of bees across a grid, and set initial 
concentrations of pheromone in several places (or alternatively making some of them initially aggressive). Then, by alter-
nating model steps and pheromone propagation steps, we obtain a discretised approximation of the colony behaviour. As 
the composition of CRN models amounts to simply merging reaction lists together, the mentioned scenario is implemented 
as a composition of copies of single-agent CRNs. Position within a spatial grid is encoded through identifiers unique to grid 
position (e.g. species Pi, j denotes the pheromone amount at position (i, j)). For further detail, we refer the reader to the 
implementation described in [6].

A 10x10 grid with initially 10 bees in each grid position, and several pheromone units initially seeded, simulated for 100 
time units, show a dramatic speed-up in favour of the abstract model: while the original, concrete model required more 
than 10 h, the abstract model took less than 2 s.

Although the observed speed-up is encouraging, the quality of abstraction was unsatisfactory, especially when cells were 
executed over initial settings which were underrepresented in or distant from the ones seen in the training data set. The 
explanation behind this observation is that our model is never trained on ‘empty cells’ - during training, there is always 

1 Honeybees defend their colonies by stinging and releasing an alarm pheromone; They thus alert others to defend but sacrifice own lives.
D. Repin and T. Petrov Information and Computation ••• (••••) ••••••
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Fig. 22. X16: mean histogram distance (intersection over union) averaged over 25 different initial settings.

Fig. 23. X16: histograms of protein P1 concentration after 1 time step (left) and 9 time steps (right).

Fig. 24. X16: simulation times for MDN model (left) and Gillespie simulation (right). Times are measured to simulate traces of length 5 for different 
combinations of number of initial settings and number of traces for each setting.

Fig. 25. X16: learned network structure. Gray rectangles represent input nodes, blue - intermediate nodes, green and yellow - output nodes (or cell inputs). 
Intermediate nodes compute the sum of values on incoming edges, output nodes - the average.
18
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some initial reaction mixture. Consequently, the learnt MDN does not capture well degenerate distributions (e.g. with near-
to-zero mean and zero deviation). Once an error occurs in a multi-scale simulation, it propagates further, rendering the 
overall abstraction not satisfactory. It is hence worth exploring how to improve the quality of abstraction, given its sensitivity 
to the amount of training data and the initial settings. Systematically examining the robustness of deep abstractions in 
multiscale setting - error propagation across scales and model validation - is beyond the scope of this manuscript and 
represents a compelling research topic for future works.

8. Conclusions and discussion

In this paper, we proposed how to automatise deep abstractions for stochastic CRNs, through learning the neural network 
architecture along with learning the transition kernel of the abstract process. Automated search of the architecture makes 
the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-
specialists. Contrary to the manual approach where the user has to create a neural network by hand, test it for his/her 
use-case, and adopt it accordingly, our method allows to find a solution with minimal efforts, within a reasonable amount 
of time. To this end, the main goal of our contribution is not to out-perform any possible man-made architecture used for 
deep abstractions, but to automatise the search for any given input CRN, and thus save time and effort of manual design 
and trials. The procedure we propose involves four hyper-parameters: three of them allowing to tune the model size, and 
one providing a set of operation candidates. Yet, the user can opt to set the four hyper-parameters to their default values, 
and run the abstraction fully automatically. Moreover, the set of operations on the edges (the forth hyper-parameter of our 
proposed search procedure), can be left as they are, if the modeller considers this set of operations to be general enough.

We implemented the method and demonstrated its performance on three representative CRNs, two of which exhibit 
multi-modal emergent phenotypes. Compared to the plain stochastic simulation, our method is significantly faster in almost 
all use-cases (see Table 2 and Table 1).

The proposed methodology, especially automated architecture search, enables fast simulation of computationally expen-
sive Markov processes. As such, it opens up possibilities for efficiently simulating interactions between many individual 
entities, each described by a complex reaction network. We demonstrate this possibility over a scenario of multiple CRN 
instances communicating via shared species across a spatial grid, inspired by a pheromone-mediated communication in 
honeybee colonies [36]. Our implementation reveals limitations of the method, related to its sensitivity to the choice of 
initial reaction mixtures in the training set. In future works, we plan to relax this limitation and develop a strategy that is 
agnostic to the initial mixture of the CRN being modelled.
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